Вязкость бензина это Измерение температуры бензина особенности Как качество бензина зависит от плотнасти?
Какая плотность у Бензина?
Какое свойство топлива играет на смесеобразование?
Расширенный поиск
    

1.2. Автомобильные бензины

  [Раздел: Автомобильные эксплуатационные материалы / Дата: 23.2.12 16:49]

 

1.2.1. Требования к качеству бензинов

Автомобильным бензином называют нефтяную фракцию, представляющую смесь углеводородов, которая выкипает при температурах от 40 до 200 °С.

К бензинам предъявляются следующие требования:

— обеспечение нормального и полного сгорания полученной смеси в двигателях (без возникновения детонации);

— образование горючей смеси необходимого состава;

— обеспечение бесперебойной подачи в систему питания;

— отсутствие коррозионного воздействия на детали двигателя;

— незначительное образование отложений в двигателе;

— сохранение качеств при хранении и транспортировке.

Каждое из перечисленных требований выражается одним или несколькими показателями, которые устанавливаются соответствующими ГОСТами.

1.2.2. Свойства и показатели бензинов, влияющие на смесеобразование

Показателями бензинов, влияющими на смесеобразование, являются плотность, вязкость, поверхностное натяжение и испаряемость.

Плотность — отношение массы вещества к его объему. Плотность бензинов (от 690 до 810 кг/м3 при температуре 20 °С) наряду с поверхностным натяжением оказывает влияние на качество распыления топлива в карбюраторе, во впускном трубопроводе и цилиндрах двигателя вплоть до перехода его в парообразное состояние. Чем меньше плотность бензина, тем более мелкую структуру будет иметь распыленное топливо, что обеспечит лучшее перемешивание его с воздухом. Это, в свою очередь, улучшит полноту сгорания, т. е. повысит экономичность двигателя. Плотность бензина мало зависит от температуры; с понижением температуры на каждые 10 °С ее величина возрастает примерно на 1 %. Если значение плотности определено без учета температуры, то ее можно привести к значению плотности при температуре 20 ° С по формуле

Коррозионные свойства бензина

где рt, — плотность бензина при температуре t; γ — температурная поправка; t — температура при измерении.

Плотность различных марок бензина примерно одинакова и определяется с помощью ареометра (рис. 1.2). Методы определения плотности нефтепродкутов определяет ГОСТ 3900—85. Ареометр погружают в стеклянный сосуд, заполненный бензином. По глубине погружения (верхняя шкала) определяют значение плотности, а по нижней шкале устанавливают температуру, при которой определялась плотность.

Вязкость — свойство жидкости оказывать сопротивление перемещению одной части относительно другой. Различают динамическую η и кинематическую v вязкости. За единицу динамической вязкости принята вязкость такой жидкости, которая оказывает сопротивление силой в 1Н, вызванным взаимным сдвигом двух слоев этой жидкости площадью 1м2, находящихся на расстоянии 1 м друг от друга и перемещающихся со скоростью 1м/с. Динамическая вязкость измеряется в Па • с.

С понижением температуры вязкость нефтяных топлив и их плотность повышаются. При понижении температуры уменьшится объемный расход бензина через жиклеры карбюратора, но при этом увеличится его массовый расход. Таким образом, влияние изменения вязкости и плотности бензина на работу жиклера противоположно, но в итоге при понижении температуры расход топлива через жиклеры уменьшится, что приведет к обеднению смеси.

Определение плотности насыщенных Паров автомобильного бензина

Рис. 1.2. Измерение плотности бензина

В ГОСТах на нефтепродукты указывается кинематическая вязкость, которая равна отношению динамической вязкости вещества к его плотности р

v = η / р.

Кинематическая вязкость измеряется в мм2/с. При температуре 20 °С вязкость бензина составляет от 0,5—0,7 мм2/с. С понижением температуры вязкость бензина повышается.

Поверхностное натяжение равно работе образования единицы площади (1м2) поверхности жидкости при постоянной температуре и измеряется в Н/м. Для всех бензинов поверхностное натяжение одинаково и при температуре 20 °С равно 20—24 Н/м.

Испаряемость — это способность вещества к переходу из жидкого состояния в газообразное. От испаряемости зависит надежность поступления бензина из топливного бака в карбюратор и скорость образования топливно-воздушной смеси. Поэтому бензины должны обладать определенной испаряемостью, обеспечивающей легкий пуск двигателя, быстрый его прогрев, полное сгорание после прогрева, невозможность образования паровых пробок в топливной системе. Испаряемость бензина оценивается фракционным составом.

Фракционный состав бензинов — это содержание в них тех или иных фракций, выраженное в объемных или массовых соотношениях.

Фракционный состав топлив определяют на специальном приборе. Отмечают температуру начала перегонки tНП, конца перегонки tКП, температуры t10, t50, t90, при которых перегоняется 10, 50 и 90 % бензина соответственно. На рис. 1.3 представлен график перегонки бензина, отражающий его фракционный состав, т. е. количество (q) перегоняемого топлива (в процентах) в зависимости от температуры перегонки (t).

В бензинах различают три основные фракции: пусковую, рабочую, концевую. Пусковая фракция представляет собой первые 10 % перегонки бензина. Чем ниже температура выкипания первых 10 % топлива, тем легче будет осуществлен пуск холодного двигателя. Однако при содержании особо низких фракций возникает опасность преждевременного испарения бензина и образование паровых пробок. По температуре t10 можно определить минимальную температуру окружающей среды, при которой возможен пуск двигателя:

tос = 0,5t10 - 50,5.

Температура выкипания 50 % бензина характеризует однородность состава смеси по отдельным цилиндрам, продолжительность и приемистость прогрева двигателя.

При снижении t50 сокращается время прогрева, увеличивается приемистость автомобиля и срок службы двигателя. Повышение t50 приводит к снижению ресурса двигателя, особенно при низких температурах окружающей среды.

Показатели t90 и tКП определяют содержание в бензинах тяжелых трудноиспаряемых фракций. Чем выше t90 и tКП, тем вероятнее неполное испарение бензина и неполное его сгорание в ци-

Плотность бензин

Рис. 1.3. График перегонки бензина

линдрах, а это увеличивает расход бензина. Кроме того, несгоревшие частицы оседают на стенках цилиндра и смывают с них масло.

Давление насыщенных паров бензина характеризует испаряемость пусковой и рабочей фракций бензина, определяет его пусковые свойства и нормируется ГОСТом: для летних бензинов — до 67,0 кПа, зимних — 66,7—93,3 кПа.

1.2.3. Свойства и показатели бензинов, влияющие на подачу топлива

К показателям бензинов, влияющим на подачу топлива кроме давления насыщенных паров относятся показатели содержания воды и механических примесей.

Механическими примесями являются твердые вещества, образующие осадок или находящиеся во взвешенном состоянии. Это может быть пыль, технологическая грязь, продукты коррозии, разрушения шлангов, прокладок, фильтров, окисления и разложения углеводородов, которые могут привести к засорению жиклеров в карбюраторе, распылителей форсунок и т. д., а также стать причиной повышенного износа деталей двигателя. Поэтому бензины и дизельные топлива не должны содержать механические примеси.

Наличие механических примесей определяется визуально путем осмотра пробы на свету в стеклянной емкости. В топливе не должно быть частиц, видимых невооруженным глазом.

Наличие воды в топливе вызывает коррозию деталей и осмоление непредельных углеводородов, содержащихся в бензине. Промышленное топливо практически не содержит воды. Однако зимой вода замерзает в топливных коммуникациях и может попасть в топливо при транспортировке, хранении и заправке. Поэтому топливо до заправки должно отстаиваться в складской таре, а при заправке фильтроваться. Наличие в топливе воды определяется также визуально.

1.2.4. Свойства и показатели бензинов, влияющие на процесс сгорания

Различают нормальное, детонационное и калильное сгорание рабочей смеси.

Сгорание смеси считается нормальным, если воспламенение топлива происходит от свечи зажигания, при этом оно полностью сгорает со средней скоростью распространения фронта пламени 15—25 м/с. Такое сгорание обеспечивает полное тепловыделение и плавное увеличение давления в цилиндрах.

Детонационным сгоранием называется такое сгорание рабочей смеси, при котором кроме воспламенения топлива от искры при определенных условиях происходит самовоспламенение отдельной его части. При этом фронт пламени распространяется со скоростью 1500—2500 м/с. Детонационное сгорание сопровождается звонкими металлическими стуками в зоне камеры сгорания, неполнотой сгорания (черный дым в отработавших газах), перегревом и снижением мощности двигателя.

Переход от нормального сгорания к детонационному обусловлен химическим составом топлива. Существует несколько теорий, объясняющих сущность детонационного сгорания, из них наиболее признанной является теория, по которой считается, что первыми продуктами взаимодействия углеводородов с кислородом являются перекиси и гидроперекиси. Они обладают большой избыточной энергией и при определенных условиях могут накапливаться с выделением большого количества тепла и активных частиц. При этом отмечено, что нормальные углеводороды легко образуют перекисные соединения, а разветвленные устойчивы к их образованию.

Так как каждая молекула гидроперекиси дает начало нескольким цепям, то скорость окисления резко возрастает. Таким образом, в конце такта сжатия при воспламенении смеси от свечи зажигания около нее формируется очаг пламени (рис. 1.4).

Плотность бензина при 10 градусах

Рис. 1.4. Этапы детонационного сгорания в рабочей смеси: а — зажигание смеси от свечи зажигания; б — формирование очага горения; в — нормальное движение фронта пламени; г — образование очагов холодно-пламенного окисления в несгоревшей смеси; д — образование детонационной волны; е — движение отраженных волн

Образовавшийся фронт пламенного горения устремляется от свечи зажигания в противоположную часть камеры сгорания. Позади фронта пламени находятся продукты сгорания температурой 2000—2500 °С, а впереди — несгоревшая еще рабочая смесь. По мере нарастания давления в зоне сгоревших газов (0,35—0,5 МПа) сгоревшая часть смеси как бы поджимает несгоревшую, отчего температура последней повышается до 380—450 °С. Поэтому в несгоревшей части смеси ускоряются процессы окисления и повышается концентрация перекисей.

Если концентрация перекисей в несгоревшей части рабочей смеси окажется ниже критической, то фронт пламени горения без существенного изменения скорости достигнет противоположных стенок камеры сгорания, и процесс сгорания смеси пройдет нормально. Если же концентрация перекисей и активных продуктов их распада в несгоревшей части рабочей смеси достигнет критической величины, то начнутся цепные реакции окисления с образованием множества очагов горения.

Так как рабочая смесь уже подготовлена к горению (много перекисей), то она сгорает с большой скоростью и резким повышением давления, в результате чего формируется ударная волна, двигающаяся по камере сгорания со сверхзвуковой скоростью. Мгновенно воспламеняются соседние слои рабочей смеси, а сама ударная волна оказывается совмещенной с фронтом пламени, при этом образуется детонационная волна. Избавиться от этого вредного явления можно подбором для каждой марки двигателя бензина с соответствующей детонационной стойкостью. С другой стороны, известно, что самый простой способ форсирования мощности двигателя путем увеличения степени сжатия ограничен именно детонационной стойкостью бензинов.

Удар детонационной волны о стенки камеры сгорания вызывает отраженные волны, вибрацию стенок и порождает звонкие металлические стуки, характерные для детонации. Слои рабочей смеси, прилегающие к стенкам цилиндра, подвергаются сильному сжатию детонационной волной, в результате чего увеличивается их теплопроводность и усиливается отдача тепла стенкам, двигатель перегревается и его работа становится жесткой.

Калильное сгорание — это воспламенение рабочей смеси от перегретых деталей и нагара в камере сгорания, когда при выключении зажигания сгорание смеси не прекращается, а она воспламеняется на такте очередного сжатия. При этом процесс сгорания и расширения смеси может наступить до завершения такта сжатия с последствиями, аналогичными для детонационного сгорания.

Детонационная стойкость оценивается октановым числом.

Показатели Банзинов влияющие на процесс сгорания

Рис. 1.5. Индикаторная диаграмма: 1 — нормальное сгорание;

2 — детонационное сгорание; ВМТ — верхняя мертвая точка

На рис. 1.5 представлена развернутая индикаторная диаграмма, т. е. зависимость изменения давления Р в цилиндре двигателя от угла поворота коленчатого вала φПВ, при нормальном и детонационном сгорании смеси.

Октановое число — условный показатель антидетонационной стойкости бензина, численно равный процентному содержанию изооктана С8Н18, октановое число которого принято за 100, в его смеси с н-гептаном С7Н16, октановое число которого равно 0, эквивалентной по детонационной стойкости испытываемому бензину. Смеси изооктана и н-гептана различных соотношений будут иметь детонационную стойкость от 0 до 100. Например, октановое число бензина равно 80. Это значит, что данный бензин по детонационной стойкости эквивалентен смеси изооктана и н-гептана, в которой изооктана 80 %.

Существуют два метода определения октанового числа: моторный и исследовательский.

Моторным методом определяют октановое число на установке УИТ-65 (рис. 1.6), позволяющей изменять степень сжатия от 4 до 9, где сравнивают детонационную стойкость исследуемого бензина с эталонными образцами при температуре горючей смеси 150 °С и частоте вращения 900 мин-1.

Исследовательским способом детонационную стойкость определяют при температуре горючей смеси 25—35 °С (смесь не подогревается) и частоте вращения 600 мин-1. В этом случае в марке бензина присутствует буква «И». Например, АИ-92 — автомобильный бензин с октановым числом по исследовательскому методу не ниже 92.

Так как определение детонационной стойкости по моторному методу проходит в более жестких условиях, то результат будет несколько ниже, чем он был бы получен при определении по исследовательскому методу (табл. 1.1). В обоих случаях после прогрева двигателя постепенно увеличивается степень сжатия до появления детонации определенной стандартной интенсивности, определяемой по шкале указателя детонации.

Показатели влияющие на испаряемость бензина

Рис. 1.6. Установка УИТ-65 для моторного определения октановых чисел бензина: 1 — пульт управления; 2 — аппаратура для измерения детонации; 3 — бак для подогрева всасываемого воздуха; 4 — конденсатор охлаждения; 5 — карбюратор; 6 — ресивер с водяным охлаждением; 7 — одноцилиндровый двигатель

Таблица 1.1. Октановые числа бензинов различных марок

Свойства Бензинов влияющие на смесеобразование

Установлена примерная зависимость между требуемым октановым числом бензина, степенью сжатия и диаметром цилиндра двигателя:

ОЧ = 125,4 - 413 / ε + 0,183D

где ОЧ — октановое число; ε — степень сжатия; D — диаметр цилиндра.

Для увеличения степени сжатия на единицу необходимо повысить октановое число на 4—8 единиц.

Октановое число зависит не только от степени сжатия. Заметное влияние оказывают температура окружающей среды, атмосферное давление и влажность. Так, октановое число может быть снижено на единицу при уменьшении температуры воздуха на 10 градусов или атмосферного давления на 10 мм рт. ст. Например, если при температуре окружающей среды —20 °С и атмосферном давлении 760 мм рт. ст. двигателю был необходим бензин с октановым числом 90, то при температуре окружающей среды —10 °С и атмосферном давлении 700 мм рт. ст. достаточно использовать бензин с октановым числом 80.

Способы повышения детонационной стойкости бензинов

Методом прямой перегонки нефти можно получить бензин с октановым числом до 91 (А-76, АИ-80, АИ-91). Однако такое производство бензина нерентабельно: во-первых, из каждой тонны нефти его получится чуть ли не вдвое меньше, во-вторых, не из всякой нефти можно получить бензин АИ-91. Поэтому обычно бензин с необходимым октановым числом получают двумя способами.

Первый способ: бензин прямой перегонки подвергают вторичной переработке (каталитический риформинг, крекинг и др.), т. е. воздействуют на химический состав бензина, что требует значительных средств, но бензин при этом получается наименее вредным для окружающей среды.

Химический состав бензинов включает следующие основные углеводороды: н-алканы, циклоалканы, изоалканы, ароматические углеводороды. Самые устойчивые к детонации углеводороды — ароматические и изоалканы. Следовательно, увеличивая их содержание в бензине, можно повысить октановое число. Практически это достигается при применении бензинов риформинга и введением ароматических углеводородов, таких, как этилбензол. Октановое число высококачественных бензинов АИ-95, АИ-98 достигается этим путем.

Второй способ: введение в бензин прямой перегонки специальных присадок — антидетонаторов. Бензин получается существенно дешевле, но и значительно вреднее (табл. 1.2).

Антидетонаторы — металлоорганические соединения, незначительное количество которых в бензинах резко повышает их детонационную стойкость. В 1920 г. была найдена добавка — тетраэтилсвинец (ТЭС) РЬ(С2Н5)4, резко подавляющая детонацию. До настоящего времени это самая эффективная добавка. Введение 0,3 % ТЭС в бензин приводит к повышению октанового числа на 15—25 единиц. Известно несколько марок этиловых жидкостей, которые содержат от 54 до 58 % ТЭС. Бензины, содержащие этиловую жидкость, ядовиты, поэтому окрашиваются в различные цвета.

Имеются заменители ТЭС, такие, как пентакарбонил железа Fe(CO)5, декарбонил марганца Мn2(СО)10 и циклопентадиенилкарбонил марганца (ЦТМ) С5Н5Мn(СО)3 с очень высоким анти-детонационным эффектом.

Наиболее приемлемой является присадка метилтребутилового эфира (МТБЭ). Добавка 10 % МТБЭ в бензин повышает октановое число на 5—6 единиц. МТБЭ хорошо совмещается с бензином и с его помощью получают неэтилированные бензины А-76 и АИ-93.

Повышение октанового числа с помощью ТЭС обходится в пять — девять раз дешевле, чем при использовании других антидетонаторов, но они экологически более вредные.

В России неэтилированные бензины составляют около 50 %, причем из них более 85 % с октановым числом 76.

Различают этилированные бензины по цвету: бензин А-76 окрашен в желтый цвет, АИ-93 — в оранжево-красный, экспортное исполнение бензинов АИ-80, АИ-92 и АИ-96 светло-желтого цвета.

Таблица 1.2. Антидетонаторы и их негативные воздействия

Свойства бензина влияющие на згорание

Способность жидкого топлива сохранять свой состав и свойства в процессе хранения и транспортировки называется стабильностью. Различают физическую и химическую стабильность

Изменение физической стабильности возможно в результате кристаллизации высокоплавких углеводородов при низких температурах, а также испарения легких фракций при высоких температурах. В результате изменяется состав (обедняется легкими фракциями), что затрудняет пуск двигателя.

Потеря легких фракций сильно влияет на давление насыщенных паров.

Химическая стабильность — сохранение химических свойств вещества в процессе хранения и транспортировки, так как со временем в бензинах происходят процессы окисления, уплотнения и разложения. Такие свойства бензинов, как окисление и смолообразование при длительном хранении, характеризуются параметром индукционного периода.

Индукционный период — время, в течение которого бензин, находящийся в контакте с воздухом под давлением 0,7 МПа при температуре 100 °С, практически не окисляется. Чем выше индукционный период бензина, тем выше его химическая стабильность.

Степень осмоления определяется содержанием в бензине фактических смол. Этот показатель определяется в специальном приборе путем испарения навески бензина (100 мл) в струе нагретого воздуха и взвешивания остатка после испарения.

Свойства вдияющие на смесеобрпзование

Рис. 1.7. Смолообразование при хранении 100 мл бензина в емкости, заполненной полностью (а) и на 50 % (б)

Смолы, образующие липкие остатки, отлагаются на таких деталях, как топливный бак, топливопроводы, насос, карбюратор, стержни впускных клапанов. Смолы, осевшие на горячих деталях, образуют твердые отложения, а попавшие в камеру сгорания, вызывают образование нагара.

Увеличение площади контакта топлива с воздухом при хранении ускоряет окислительные процессы (рис. 1.7). Поэтому при хранении целесообразно заполнять емкости до горловины.

Воздушное пространство над топливом после реакции с парами топлива наполняется азотом и процесс окисления замедляется. Поступление свежего воздуха снова вызовет интенсивное протекание окислительных процессов. Поэтому хранить бензин необходимо в герметично закрытых емкостях (табл. 1.3).

Таблица 1.3. Содержания смол в 100 мл бензина при различной продолжительности хранения его в баке автомобиля ЗИЛ-130 в зависимости от герметичности пробки, мг

Свойства и показатели Бензинов образования отложений

Процессы окисления и осмоления ускоряются с повышением температуры бензина. Процесс окисления самоускоряющийся, поэтому бензин, залитый в емкость, не очищенную от остатков старого бензина, осмоляется быстрее. Ускоряют образование смол ржавчина и грязь.

1.2.6. Коррозионные свойства бензинов

Наибольшую опасность с точки зрения коррозионного воздействия представляют: вода, водорастворимые кислоты и щелочи, а также сернистые соединения.

Водорастворимые кислоты и щелочи

Водорастворимые кислоты и щелочи являются электролитами. Их капельки осаждаются на поверхности металла и вызывают электрохимическую коррозию. Продукты коррозии переходят в топливо и засоряют фильтры и другую топливную аппаратуру.

Неорганические кислоты и щелочи — примеси, которые могут попасть в топливо при его очистке. Так, например, при производстве бензина для удаления органических кислот его очищают раствором щелочи, затем промывают водой. При недостаточно эффективной обработке в бензине могут оставаться щелочь и вода.

Особенно вредными для топлива являются минеральные соли и кислоты. Их присутствие в топливе не допускается. Проверка бензинов и дизельных топлив на содержание минеральных кислот и щелочей носит качественный характер, для чего топливо проверяют водной вытяжкой.

Нафтеновые (органические) кислоты

Органические кислоты, содержащиеся в нефти, при переработке попадают в бензины и дизельное топливо.

Нафтеновые кислоты — слабые электролиты, которые обладают невысокой коррозионной активностью, что позволяет не удалять их из нефтепродуктов. Кроме того, они оказывают благоприятное смазывающее воздействие. Содержание органических кислот в топливе определяется кислотным числом, которое выражается количеством гидроксида калия (КОН), необходимым для нейтрализации органических кислот, находящихся в 100 мл топлива; измеряется в мг. Кислотное число для бензинов не должно быть более 3 мг КОН на 100 мл топлива; для дизельных топлив — не более 5 мг КОН на 100 мл топлива.

Сернистые соединения

В топливах различают активные и неактивные сернистые соединения. Активные соединения взаимодействуют с металлами при комнатной температуре. К ним относятся сероводород, меркаптаны, элементарная сера. Они вызывают коррозию металлов и их содержание в бензинах не должно превышать более 0,0015 %. Наличие активных сернистых соединений определяют качественным методом — испытанием на медную пластинку. Если цвет пластинки после ее нахождения в бензине при температуре 50 °С в течение 3 ч стал черным, черно-коричневым или серо-стальным, значит топливо не выдержало испытания. При всех других изменениях цвета содержание активных сернистых соединений не превышает допустимых норм.

Неактивные сернистые соединения (сульфиды, дисульфиды) при обычных условиях практически не взаимодействуют с металлами. Однако при высокой температуре (во время сгорания) они образуют сернистый газ, который с металлами вступает в реакцию.

ГОСТ допускает содержание неактивных сернистых соединений в следующих количествах:

для бензина А-72 — не более 0,12 %;

для бензинов А-76, АИ-93, АИ-98 — не более 0,1%;

для бензина АИ-95 — не более 0,02 %.

Наличие неактивных сернистых соединений в бензинах определяют по содержанию элементарной серы после сжигания образца.

Современные автомобильные бензины, как правило, готовят смешиванием нескольких компонентов. Это позволяет получать бензин с заданными показателями качества при рациональном использовании свойств каждого компонента.

Основными показателями, определяющими компонентный состав бензинов, являются детонационная стойкость и фракционный состав. Качество автомобильных бензинов регламентируется ГОСТами.

По наличию антидетонаторов бензины делятся на этилированные и неэтилированные. Каждая марка бензина кроме АИ-95 и АИ-98 имеет летнюю и зимнюю модификации. Разница в температурах перегонки модификаций составляет 10—20 С, причем для всех марок бензина температура испарения одноименных фракций одинакова.

Состав бензина и другие его показатели зависят от месторождений нефти и технологии ее производства.

Маркировка бензинов состоит из буквы А (для автомобильных бензинов), а также цифр, соответствующих минимальному октановому числу, определенному по моторному или исследовательскому методу.

Основные показатели бензинов по ГОСТ 2084—77 приведены в табл. 1.5.

Бензины различных марок получают разными способами, и каждая марка предназначена для двигателей с определенной степенью сжатия (табл. 1.4).

Таблица 1.4.Способы получения и назначение автомобильных бензинов

Способы бензина образовать отложения

Тест автомобильные бензины

В скобках указаны значения для этилированных бензинов.

В настоящее время в стране действуют ТУ 38001165—97 на бензины для автомобильного транспорта, которые кроме указанных в табл. 1.5 включают неэтилированные бензины АИ-80, АИ-91 и АИ-96. Бензин АИ-91 предусмотрен вместо бензина АИ-93.
В целях экономии расходов на бензин и прочие горюче-смазочные материалы, различными компаниями используется мониторинг транспортных средств. Подробнее о таких системах читайте в статье GPS мониторинг транспорта.

Снижение октанового числа на две единицы дало возможность из того же количества сырья получить бензина на 3—5 % больше.

На неэтилированные бензины с января 1999 г. в России действует ГОСТ Р51105—97, который предусматривает четыре марки бензина: Normal-80, Regular-91, Premium-95 и Super-98. Первый из них заменит бензины А-76 и АИ-80 из-за ужесточения экологических требований: содержание тетраэтилсвинца не более 0,01 г на 1 л топлива, запрещено использование железосодержащих антидетонаторов; содержание марганца не более 0,5 г на 1 л топлива для бензина Normal-80 и 0,18 г для бензина Regular-91. Для сравнения: по старому ГОСТу для неэтилированных бензинов допускалось содержание тетраэтилсвинца от 0,013 до 0,017 г на 1 л бензина, железа — 0,37 г, марганца — 0,5 г.

Применение неэтилированных бензинов является радикальной мерой по снижению токсичности отработавших газов и сохранению чистоты окружающей среды. Однако только этого способа недостаточно для того, чтобы добиться данной цели. Необходимо также использовать автомобили с исправными системами питания и зажигания двигателей, обеспечивая тем самым максимально возможную полноту сгорания топлива.

В табл. 1.6 показана взаимозаменяемость бензинов российского и зарубежного производства.

Таблица 1.6. Взаимозаменяемость бензинов

Требования к качеству бензина кратко

Отечественный бензин АИ-95 по качеству приближается к применяемому за рубежом бензину Premium с октановым числом 97—98. В странах Европейского экономического сообщества (ЕЭС) доля бензинов Premium составляет примерно 78 %, а бензинов Regular — 22 %. Так как отечественный бензин АИ-93 не соответствует ни бензину Premium, ни бензину Regular, то на экспорт поставляется бензин АИ-92.

Страны ЕЭС решением от 20.03.1985 г. утвердили единый неэтилированный бензин Premium с октановым числом 95, установленным исследовательским методом. Октановое число бензинов Regular 91—92.

Контрольные вопросы

1. Какие предъявляются требования к качеству бензина?

2. Какие свойства и показатели бензина влияют на смесеобразование?

3. Что такое нормальное, детонационное и калильное сгорание?

4. Что такое детонационная стойкость бензинов и какие существуют методы определения октанового числа?

5. Расскажите о способах повышения детонационной стойкости бензинов.

6. Расскажите о способности бензина образовывать отложения.

7. Расскажите о коррозионных свойствах бензина.

8. Как маркируются бензины?

Автор: В. А. СТУКАНОВ
«АВТОМОБИЛЬНЫЕ ЭКСПЛУАТАЦИОННЫЕ МАТЕРИАЛЫ»

 


Читайте также:




Оставить комментарий
Ваше имя: *
Ваша почта: ?

Комментарий: *

Бензин аи 80 плотность вязкость температура Вязкость бензина от температуры Плотност бензина
Расход топлива при низких температурах Эксплутатционные требования к качеству бензина Как завит плотность от температуры бензина?
Свойства бензина влияющие на процесс смесеобразования Марка бензина и его плотность Бензин вязкочть
Величина вязкости автомобильных Бензинов Влияние испареия безина на качество Вязкость бензина это

Введите символы: *
Как влияет давление на процесс горения?
Обновить




222555

Обратная связь | Фотогалерея | Книги по автомобилям
© 2008-2017 CarLines.ru